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ABSTRACT

Multi-lingual feature extraction using bottleneck layers in deep neu-
ral networks (BN-DNNs) has been proven to be an effective tech-
nique for low resource speech recognition and more recently for lan-
guage recognition. In this work we investigate the impact on lan-
guage recognition performance of the multi-lingual BN-DNN archi-
tecture and training configurations for the NIST 2011 and 2015 lan-
guage recognition evaluations (LRE11 and LRE15). The best per-
forming multi-lingual BN-DNN configuration yields relative perfor-
mance gains of 50% on LRE11 and 40% on LRE15 compared to a
standard MFCC/SDC baseline system and 17% on LRE11 and 7%
on LRE15 relative to a single language BN-DNN system. Detailed
performance analysis using data from all 24 Babel languages, Fisher
Spanish and Switchboard English shows the impact of language se-
lection and the amount of training data on overall BN-DNN perfor-
mance.
Index Terms: language recognition, multi-lingual deep neural net-
work, multi-lingual bottleneck features

1. INTRODUCTION

Multi-lingual modeling has gained renewed interest particularly for
low resource automatic speech recognition (ASR). In the recent
IARPA Babel OpenKWS15 Evaluation [1], top performing systems
used language independent feature representations extracted from
a multi-lingual deep neural networks with bottleneck layers (BN-
DNNs) to train language dependent DNNs for the surprise language
[2]. Multi-lingual BN-DNN features have also been shown to per-
form well for language recognition [3] and proved to be a very ef-
fective approach in the NIST 2015 language recognition evaluation
(LRE15) open training condition [4, 5].

In this work we evaluate the impact of different architectures and
training configurations on the performance of the multi-lingual BN-
DNN approach on LRE11 and the more recent LRE15. Data from
the 24 Babel build packs [1], LDC Switchboard English [6] and LDC
Fisher Spanish [7] are used to train multi-lingual BN-DNNs. The re-
sults reported here highlight the importance of selecting appropriate
languages and sufficient amounts of data per a language in order to
obtain good language recognition performance.
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Fig. 1. I-vector system architecture

2. I-VECTOR SYSTEM

Most state-of-the-art language recognition systems are based on the
i-vector framework [8] depicted in Figure 1. The i-vector system
uses a Gaussian mixture model (GMM) which is often referred to as
the universal background model (UBM) to extract zero’th and first
order statistics from the input sequence of feature vectors. A super
vector created by stacking the first order statics is transformed to a
lower dimensional sub-space using a linear transformation that de-
pends on the zeroth order statistics (see [9] for more details). This
transformation requires a total variability matrix T which is esti-
mated from a large set of super-vectors using an EM-algorithm [9].

The i-vector is treated as a single low dimensional representation
of a waveform that contains speaker, language, session and channel
information. With a sufficient number of recorded sessions across all
languages it is possible to estimate a full rank within class covariance
matrix (Σwc). It is more difficult to estimate a full rank across class
covariance matrix (Σac) because of the relatively small number of
languages available compared to the i-vector dimension. In this work
we use PPCA to estimate a full rank Σac matrix. Another important
set of parameters for an i-vector system are the mean vector m and
whitening matrix W which are used to transform the i-vectors to a
unit normal distribution N (0, I) over a pool of data before applying
length normalization [10]. Typically m and W are estimated on the
same data used to estimate Σwc and Σac. I-vector whitening and
lenght normalization are generally applied before i-vector scoring.

An effective technique for computing the likelihood ratio that an
i-vector zi represents speech data from the same language as an i-
vector language model zl (Hs) or from some other language (Hd) is
probabilistic linear discriminant analysis (PLDA). The PLDA likeli-
hood ratio is given by

p(zi, zl|Hs)

p(zi, zl|Hd)

which can be computed using the “2 covariance model” described in
[11] with the hyper parameters Σwc and Σac.



Fig. 2. BN-DNN architecture for speaker or language recognition

3. BOTTLENECK DNN

The feed forward DNN depicted in Figure 2 has a narrow layer - the
bottleneck (BN) layer - that is used for extracting features that are
then used to train another classifier [12]. In this work, a 7 layer BN-
DNN is used where the input is an 819 dimensional stacked feature
vector and the output is a vector of senone posterior probability esti-
mates. The number of senones depends on the language corpora and
the ASR system used to create senone alignments for the data. The
input vector consists of 21 stacked 39 dimensional feature vectors
where each feature vector consists of 13 perceptual linear predictor
coefficients (PLPs) normalized using utterance level feature warping
along with their first and second order derivatives [13, 14]. In this
work we use a linear BN layer without an offset which is equivalent
to replacing the layer before and after the BN with a single weight
matrix with a rank no greater than the BN dimension [15]. Utterance
level feature warping is also applied to the BN-DNN features.

4. MULTILINGUAL DNN

The multi-lingual DNN architecture used in this work is depicted in
Figure 3. The first 5 hidden layers of the DNN are shared across
all languages in the training set and the last two layers are unique
for each language. A modified version of the standard stochastic
gradient descent training algorithm draws a 512 sample mini-batch
from each language in sequence. Currently all languages are sam-
pled from equally which results in the least represented language
determining the total amount of training data used in each epoch.

The DNN multi-lingual architecture shown in Figure 3 is very
similar to BN-DNN architecture described in Section 3 except that
the last two output layers are different for each language. A straight
forward implementation of the modified SGD training algorithm
with Theano [16] uses a common set of Theano shared variables
for the language independent layers and unique Theano shared vari-
ables for the language dependent output layers. The gradient of the
language dependent cost functions are then easily computed by ap-
plying the Theano “grad” function to the cross entropy between the
ground truth labels and the output softmax for each language. A sep-
arate Theano function is then created for processing mini-batches in
each language with updates to the corresponding set of language de-
pendent and language independent Theano gradient parameters.

Fig. 3. Multi-lingual BNF architecture

5. EXPERIMENTAL SETUP

The multi-lingual bottleneck DNNs used in this work were trained
with different combinations of the 24 IARPA Babel languages [1] as
well as LDC Fisher Spanish and Switchboard English [7, 6]. The 26
language corpora are summarized in Table 1. A Kaldi [17] “tri4a”
system was trained for each language to obtain frame level labels
(senones or triphone state clusters) using the pronunciation lexicon
provided for the corresponding corpora. The number of seneones for
each language is also reported in Table 1. The DNN training config-
urations including the languages and amount of data per a language
are summarized in Table 2.

Two language recognition tasks are used for evaluating the
multi-lingual bottleneck systems. The first is the NIST 2011 Lan-
guage Recognition Evaluation (LRE11) [18] which includes 24 lan-
guages from both telephone and broadcast sources and has test dura-
tions of 3, 10, and 30 seconds. The second is the more recent NIST
2015 Language Recognition Evaluation (LRE15) [19] which con-
sists of 20 languages partitioned in 6 language clusters: Arabic, Chi-
nese, English, French, Iberian and Slavic. The LRE11 and LRE15
performance scoring metric is the NIST Cavg cost function. LRE11
is scored separately for each duration (3, 10 and 30 seconds) and
LRE15 is scored using the average of the Cavg for each language
cluster. Details on the LRE2011 and LRE15 training and develop-
ment data can be found in [20] and [4] respectively.

Following the discussion in [4], LRE15 performance is given
both with and without the French language cluster and the language
models are trained only on the fixed LRE15 training data. LRE15
performance is computed excluding any cuts that are from the 24
Babel corpora listed in Table 1.

6. EXPERIMENTS

Except where explicitly stated otherwise, the BN-DNN configura-
tions in the following experiments use 7 hidden layers where the
second to last hidden layer is an 80 dimensional linear bottleneck
and all other hidden layers have 1024 nodes with sigmoid activation
functions. In all cases the i-vector system uses a 2048 component
Gaussian mixture model (GMM) and a 600 dimensional total vari-
ability sub-space. The i-vectors are scored using PLDA described in
Section 2 and a discriminative Gaussian backend trained on devel-
opment data is used for score calibration (see [20] and [4] for more
details). All systems use speech activity segmentation generated us-
ing a GMM based speech activity detector. Finally, the front-end
feature extraction for the baseline system uses 7 static cepstra ap-
pended to 49 shifted delta cepstra (SDC) for a total of 56 features.



Language LDC or Babel corpora Senones
English Switchboard 1 release 2 4144
Spanish Fisher Spanish 3956

Cantonoese IARPA-babel101b-v0.4c 4615
Assamese IARPA-babel102b-v0.5a 4677
Bengali IARPA-babel103b-v0.4b 4773
Pashto IARPA-babel104b-v0.bY 4824
Turkish IARPA-babel105b-v0.4 4771
Tagalog IARPA-babel106b-v0.2g 4700

Vietnamese IARPA-babel107b-v0.7 4664
Haitian IARPA-babel201b-v0.2b 4822
Swahili IARPA-babel202b-v1.0d 4616

Lao IARPA-babel203b-v3.1a 4733
Tamil IARPA-babel204b-v1.1b 4341

Kurmanji IARPA-babel205b-v1.0a 4545
Zulu IARPA-babel206b-v0.1e 4519

Tok Pisin IARPA-babel207b-v1.0e 4699
Cebuano IARPA-babel301b-v2.0b 4663
Kazakh IARPA-babel302b-v1.0a 4559
Telugu IARPA-babel303b-v1.0a 4412

Lithuanian IARPA-babel304b-v1.0b 4821
Guarani IARPA-babel305b-v1.0c 4513

Igbo IARPA-babel306b-v2.0c 4523
Amharic IARPA-babel307b-v1.0b 4713

Mongolian IARPA-babel401b-v2.0b 4543
Javanese IARPA-babel402b-v1.0b 4669
Dholuo IARPA-babel403b-v1.0b 4644

Table 1. Language corpora and number of senones used in experi-
ments (Babel “BP” languages are in bold)

Note that “FER” reported in the tables is the lowest BN-DNN frame
error rate on held out validation data for the last training epoch.

6.1. BN-DNN Configurations

The following analysis evaluates the performance of i-vector sys-
tems trained with BN features extracted from uni-lingual or multi-
lingual BN-DNNs with different architectures, different amount of
training data and different sets of corpora.

Table 3 shows the impact of the amount of training data and the
BN layer dimension on performance for a BN-DNN trained only on
Switchboard English. Increasing the amount of trainnig data from
100 to 300 hours improves the average relative performance by 5%
for LRE11 and 8% for LRE15 for the 64 dimensional BN and 11%
for LRE11 and 5% for LRE15 for the 80 dimensional BN. Increas-
ing the BN dimension from 64 to 80 on the other hand degrades per-
formance by 5% for LRE11 and improves performance by 2% for
LRE15 for 100 hours of training data and improves performance by
2% for LRE11 while having no impact on performance for LRE15
for 300 hours of training data. This suggests that the amount of data
has a bigger impact on performance than the width of the BN layer
and a wider BN layer can degrade performance unless there is a suf-
ficient amount of training data. All remaining experiments reported
here use an 80 dimensional linear BN layer.

Table 4 shows the impact on performance of the hidden layer
dimension for a BN-DNN trained with the 7L-420hr configuration.
On average there is a relative improvement of 16% for LRE11 and
6% for LRE15 increasing the hidden layer dimension from 512 to
1024 nodes and a relative improvement of 7% on LRE11 and 3%

on LRE15 increasing the hidden layer dimension from 1024 to 2048
nodes. The small relative gain for the 2048 node hidden layer BN-
DNN and the increased size and computation requirements may not
be a reasonable trade off for some applications. All remaining exper-
iments reported here use 1024 dimensional sigmoidal hidden layers
along with the 80 dimensional linear BN layer.

Table 5 gives the performance for training a BN-DNN with the
24 Babel languages on different amounts of data per a language. In-
creasing the amount of data from 10 to 20 hours per a language gives
an average relative performance gain of 9% and 4% on LRE11 and
LRE15 respectively. Increasing the amount of data further from 20
to 40 hours per a language yields an additional 5% and 3% average
relative gain on each task. Clearly there are diminishing returns as
one increases the amount of data per a language which also has a sig-
nificant impact on the amount of time required to train a BN-DNN.

6.2. BN-DNN Results

Table 6 summarizes the performance for the various BN-DNN ivec-
tor systems described in Section 6.1 as well as the baseline SDC
i-vector system. As shown in our prior work [13, 14], all the BN-
DNN i-vector systems give substantial gains in performance relative
to the SDC i-vector baseline. In this new work, the largest gains are
coming from the 7L-420hr BN-DNN which gives an average relative
gains of 50% on LRE11 and 40% on LRE15. Compared to the sin-
gle language 1L-300h BN-DNN the relative gains for the 7L-420hr
BN-DNN are 17% on LRE11 and 7% on LRE15.

It is interesting that we are not seeing any gain from the 24L-
960hr system which uses both more languages and more data than
the 7L-420hr system. One possible explanation at least for LRE15
is that the 24 Babel languages do not cover many of the 6 lan-
guage clusters including English and Iberian which are at least par-
tially covered by the 7L-420hr training configuration which includes
Switchboard English and Fisher Spanish data. In fact the only other
language cluster covered by the 26 Babel language corpora is French
from the Babel Haitian data.

Table 7 gives the LRE15 breakdown per a language cluster for
the 7L-420hr and 24L-960hr systems. The largest degradations in
performance (from 8% to 18%) come from the English, Slavic and
Iberian language clusters likely due to the lack of Switchboard En-
glish and Fisher Spanish data in the 24L-960hr training configura-
tion. There is a small relative improvement of about 4% for the
French language cluster which may be due to the additional Babel
Haitian data in the 24L-960hr training configuration.

The 26L-520hr training configuration includes the English and
Spanish data missing from the 24L-960hr configuration, but the
amount of data per a language is reduced from 40 hours to 20 hours
which may explain the lackluster performance. Unfortunately we do
not currently have results for a 26 language configuration with 40
hours per a language (or 1040 hours of data total) which presumably
would yield better performance. Currently this larger configuration
would take considerably longer to train (the 24L-960hr DNN in Ta-
ble 6 required almost two weeks). In the future we hope to parallelize
and optimize our SGD implementation.

7. CONCLUSIONS

In this work we have shown that multi-lingual BN-DNN features
can give significant performance gains even when compared to sin-
gle language BN-DNN features. The 7L-420hr training configura-
tion yields a 17% relative improvement on LRE11 when compared
to the single language BN-DNN and a 50% relative improvement



Training Corpora #Lang Hours / lang Total hours
1L-100hr SWB English 1 100 100
1L-300hr SWB English 1 300 300
5L-300hr Babel BP Languages 5 60 300
7L-420hr Babel BP, SWB Eng, FSH Span 7 60 420

24L-240hr All Babel languages 24 10 240
24L-480hr All Babel languages 24 20 480
24L-960hr All Babel languages 24 40 960
26L-520hr All Babel, SWB Eng, FSH Span 26 20 300

Table 2. DNN training configurations used for experiments

Training BN FER LRE11 LRE15
30 Sec 10 Sec 3 Sec Avg w/o French

1L-100hr 64 63.8 2.24 6.33 16.7 18.7 12.8
1L-100hr 80 54.3 2.44 6.63 16.9 18.4 12.5
1L-300hr 64 50.4 2.06 6.15 16.2 17.5 11.7
1L-300hr 80 50.5 2.05 5.92 16.0 17.5 11.8

Table 3. LRE11 and LRE15 Cavg performance for 64 and 80 dimension BN-DNN trained with 100 and 300 hours of Switchboard data.

Training Hidden layer FER LRE11 LRE15
30 Sec 10 Sec 3 Sec Avg w/o French

7L-420hr 512 60.9 2.00 6.01 15.5 17.3 11.7
7L-420hr 1024 60.7 1.58 4.91 14.1 16.6 10.7
7L-420hr 2048 58.6 1.38 4.62 13.7 16.3 10.3

Table 4. LRE11 and LRE15 Cavg using 512, 1024 and 2048 node hidden layers with the 7L-420hr training configuration.

Training Hours / lang Total hours FER LRE11 LRE15
30 Sec 10 Sec 3 Sec Avg w/o French

24L-240hr 10 240 60.6 2.20 5.94 16.1 18.2 12.4
24L-480hr 20 480 58.4 1.93 5.41 15.1 17.5 11.8
24L-960hr 40 960 57.1 1.78 5.11 15.0 17.0 11.4

Table 5. LRE11 and LRE15 Cavg using 10, 20 and 40 hours and 24 Babel languages.

Training FER LRE11 LRE15
30 Sec 10 Sec 3 Sec Avg w/o French

Baseline N/A 4.34 10.0 21.4 25.5 19.7
1L-300hr 50.5 2.05 5.92 16.0 17.5 11.8
5L-300hr 60.4 1.76 5.23 ‘14.8 17.0 11.0
7L-420hr 60.7 1.58 4.91 14.1 16.6 10.7

24L-960hr 57.1 1.78 5.11 15.0 17.0 11.4
26L-520hr 58.5 1.69 5.12 14.6 17.3 11.4

Table 6. LRE11 and LRE15 Cavg for 80 dimensional BNF and different training configuration



Cluster 7L-420hr 24L-960hr
Arabic 17.8 18.2

Chinese 7.82 7.95
English 8.58 10.1
French 46.2 44.5
Iberian 16.8 18.2
Slavic 2.54 2.80

Average 16.6 17.0

Table 7. LRE15 performance comparison for 7L-420hr and 24L-
960hr training configurations

when compared to the MFCC/SDC baseline. The relative gains are
substantially smaller on LRE15 and there is some indication that this
has to do with the language mismatch between the languages used
to train the BN-DNN and the LRE15 language clusters. Including
English and Spanish in the BN-DNN training gives a significant im-
provement in performance compared to using large amounts of only
the 24 Babel languages. This indicates that it may be possible to
achieve more gains on the Arabic and Chinese cluster by adding ad-
ditional ASR corpora such as Callhome Egyptian Arabic or HKUST
Mandarin Chinese.

One topic not addressed in this work is the inherent limitations
of the fixed training condition for LRE15 which may not represent all
dialects of each language cluster at test time equally well. Through
multi-condition BN-DNN training and various data augmentation
strategies it is possible compensate for some mismatches between
training and test data channel conditions [21, 22], but it is not clear
how one would apply the same technique to artificially add phono-
tactic variability to speech for example to account for formal and
informal versions of language dialect (see [4] for a discussion on the
LRE15 French cluster).
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